MODIS Light ### Option for Low-Risk EOS Cost Reduction (Contact: Carl Schueler 805-562-7155; fax 7767 e-mail: cfschueler@ccgate.hac.com) 2 May 1996 Hughes Santa Barbara Remote Sensing ### MODIS Light Lowers Cost Minimizes Risks - Reduce Spacecraft Resources and Launch Mass - Delete less critical subsystems (e.g., SRCA) - Reduce Scan ($\pm 45^{\circ}$) and Aperture (6") - Repackage to Cut Mass & Volume - Reduced Electronics Lowers Power - Reduce Instrument Recurring Engineering (RE) and Non-RE (NRE) Costs - Maximum use of Existing Flight Subsystems cuts NRE - Maximum use of Existing Ground Equipment cuts NRE - Streamlined Documentation/Manufacturing Process cuts Both - High Performance and Low Risk - 36 MODIS Bands with same IFOVs/Spectral Definition - Solar Diffuser/Blackbody Calibration - Minimal Impact to MODIS Processing Algorithms # MODIS to MODIS Light #### Baseline • Bands Calibration 220 kg Mass • SRCA 1x1.6x1m • Size • SDSM 160W Power • SD No NRE • Cost • BB 36 ### **Smaller Scanner Reduced Calibration Smaller Mainframe Repackaged Electronics** Calibration 100 kg Mass • SD 1x0.6x0.7m Volume 100W • BB Power Low NRE Cost 36 Bands COOLE ## **MODIS Light - Baseline Scan Approach** - Larger than MODIS Light with Tilted Scan - Baseline Swath Shape and Optical Path ## **Design Approach Affects Performance** | Parameter | Selected MODIS Design (Including MODIS Light) | Other Approaches Considered* | |--|---|--| | Radiometric Stray Light Calibration Tunability** | Low with 2d Int. Stop Allows Frequent Calibration Small Calibration Target Individual Array per Band | Field Stop Limited to 1d Calibration Obstructs Scene; 1/f noise Requires Large, Uniform Target Bands share Detectors: Hi Gain Appls Penalized | | Spectral Bandpass Shape Purity | Tailored Band-shapes Individual Filters fed by
Distributed Blocking | Requires Band Synthesis More Difficult to Maintain Constant Center λ across FOV; Difficult Out-of-Band Rejection | | Spatial Uniformity | Full-Field UniformityFew Detectors Eases Calibration | WFOV Edge Distortion More difficult Calibration | ^{*} Narrow/Wide FOV Spectrometers using Gratings, Prisms, or Wedge Filters ^{**}MODIS has multiple similar bands with Application Specific Radiometry ## Summary - Straightforward Repackaging Offers Significant Reduction in Mass and Volume - Reduces Instrument Cost: Low NRE and RE MODIS Miniaturization Approach - Maximizes MODIS Data Continuity: Minimal Impact to MODIS Processing Algorithms - Preserves *Optical Bench Assembly* "Heart of MODIS" that Retains MODIS Spectroradiometry